

Legend

X The standard is clearly addressed by program activities.

- This standard potentially could be addressed as part the program either by actions that the coach or teacher takes when working with the students or by conditions established by the program.

Modu	Ile Abbreviations		
WS	Starting with Workforce Skills	PS	Project Sprints and Competition
DG	Designing for the Game	14	Industry 4.0 and Your Community
BR	Building and Programming a Basic Robot	SJ	Sensors Machine Learning and Java
MM	Machines to Mechanisms	12	Improving through Iteration II
11	Improving through Iteration I	LC	Learning and Pathways and Career Exploration

TE	Computer Technology Fundamentals Expectations	WS	DG	BR	MM	11	PS	14	SJ	12	LC
J4											
М											
	A1.1 describe the function of internal buses within computer systems (e.g., data bus;			-					-		
e	memory bus; address bus; buses in CPUs, RAM, and chipsets);										
war	A1.2 identify appropriate storage devices for various computing			-					-		
ard	requirements (e.g., optical drives, flash drives, single and arrayed hard										
H L	drives);										
oute	A1.3 describe how advances in computer technology (e.g., CPUs, memory,							х			
dua	storage) have spurred advances in related technologies (e.g., cellular										
U U U	telephones, hand-held devices, image capture systems).										
	A2.1 describe how to assign permissions and attributes to drives, folders,	-	-	-	-	-	-	-	-	-	-
	and files with various operating systems (e.g., user permissions, archiving,										
	encryption, compression);										
ns	A2.2 describe methods for optimizing a computer system (e.g., updating			х		х		х	х	х	
ten	firmware, updating drivers, defragmenting files, allocating virtual memory);										
Sys	A2.3 describe the functions of the BIOS and other firmware in computer			х		-		-	-	-	
er	systems (e.g., boot process, hardware recognition, resource allocation, port										
put	settings, energy management);										
шо	A2.4 describe various standards for data flow between computer ports and			х		х		х	х	х	
Ŭ	peripherals (e.g., MIDI, RS-232, USB, IEEE 1394, SCSI).										
	A3.1 use technical terminology to accurately describe the specifications for			х	х	х	х	х	х	х	
	electronic components and computer interfaces;										
	A3.2 describe the function and operation of various input devices, output			х	х	х	х	х	х	х	
	devices, and electronic circuits used in interface and control systems (e.g.,										
	input devices: temperature sensor, light sensor, position encoder; output										
	devices: AC motor, stepper motor; circuits: power supply, motor driver);										

	A3.3 calculate the values and operating parameters of electronic		-							
p	components in a circuit, using fundamental laws and circuit-analysis									
cics, ar cing	techniques (e.g., Ohm's law, Kirchhoff's laws, Thévenin and Norton									
	equivalent circuits);									
bo	A3.4 draw and interpret diagrams that use standard symbols to represent		х		х				х	
Rc nte	electronic components and the operation of control systems (e.g., schematic									
ics, er I	diagram, block diagram, flow chart);									
ron out	A3.5 research and select components based on circuit requirements (e.g.,	х	х	х	х	х	х	х	х	
ect	use Internet searches, manufacturer's data sheets, supplier catalogues,									
ыö	and/or parts database).									
	A4.1 describe the function of routed protocols (e.g., IP, IPX) and routing							х		
Ś	protocols (e.g., RIP, OSPF, EIGRP) in the transmission of data over a network;									
ept	A4.2 explain the seven layers of the OSI (open systems interconnection)									
onc	model and the corresponding network devices;									
U U U	A4.3 describe IP addressing and subnetting strategies for IP networks (e.g.,									
king	borrowing bits, calculating number of subnets and hosts, determining									
/or	specific subnet address range);									
etw	A4.4 describe static and dynamic classful public and private addressing and									
ž	related strategies (e.g., Class A, Class B, Class C, NAT, PAT, DHCP).									
	A5.1 perform arithmetic operations on positive and negative binary numbers		х		х		х	х	х	
	(e.g., addition, subtraction) using two's complement representation;									
Ital	A5.2 use Boolean logic (e.g., Karnaugh maps) to design a solution to a logic							х	х	
Digi	problem that has multiple inputs and outputs (e.g., manufacturing process,									
] pr	starting a car);									
ן ar	A5.3 use Boolean logic and the laws of Boolean algebra to design, simplify,							х	x	
tior	and build computer logic circuits using logic gates (e.g., adder circuit,									
Ita	decoder circuit);									
ser	A5.4 describe the role of flip-flop circuits in the storage and flow of data									
pre	(e.g., asynchronous counter, synchronous counter, shift register, memory									
Re	register);									
ata ogic	A5.5 describe how computers store and work with different types of data,		х		х		х	х	x	
ЧЧ	including numbers, characters, and arrays;									
	A5.6 explain how analogue quantities can be represented by digital systems		х		х		х	х	х	
	(e.g., analogue to-digital converter, pulse-width modulation).									

TEJ4 M	Computer Technology Skills	WS	DG	BR	MM	11	PS	14	SJ	12	LC
	B1.1 select appropriate components and build computer systems that meet										
	specific requirements (e.g., gaming system, engineering workstation, media										
su	centre, control system, home office system);										
Itio	B1.2 select and use appropriate procedures, tools, and diagnostic equipment										
Solu	when assembling computing devices (e.g., procedures: use of anti-static										
e	wrist strap and/or mat; tools: crimper; diagnostic equipment: multimeter,										
Na	cable tester, oscilloscope);										
ard	B1.3 construct and test connection media for interfacing a computer with an			х							
Т	external device (e.g., serial cable, parallel cable).										
	B2.1 use a variety of sources to collect information for solving computer			х		х		х	х	х	
	problems (e.g., Internet searches, technical reference materials);										
	B2.2 create a log and/or engineering journal to document work done on	х	х	х	х	х	х	х	х	х	х
s ter	computer systems (e.g., troubleshooting, software updates, hardware										
but sms	installations, maintenance);										
om /ste	B2.3 use a logical approach to diagnose and troubleshoot computer			х		х		х	х	х	
َى ت	hardware and software problems										
	B3.1 use a design process (see pp. 22–23) and appropriate software (e.g.,	х			х	х			х	х	
	circuit simulation software, CAD [computer-aided design] software) to										
Iter	design circuits;										
ndı	B3.2 construct circuits made from both discrete components and integrated										
log	circuits to perform specific functions (e.g., regulated power supply,										
0 pi	electronic dice, audio amplifier, microcontrollerbased alarm circuit)										
ar	B3.3 safely construct electronic circuits for interfacing or robotic applications										
tic	using appropriate materials, tools, and techniques, including soldering (e.g.,										
oqo	materials: breadboard, printed circuit board, etchant, solder; tools: soldering										
Ro	iron, etch bath, third hand with magnifier);										
nics	B3.4 test and troubleshoot electronic circuits, using appropriate methods			х	х	х	х	х	х	х	
troi	(e.g., isolating and substituting components) and test equipment (e.g.,										
lect	multimeter, oscilloscope, logic probe), and modify the circuits to meet										
	design requirements if necessary										
	B4.1 design and build a network (e.g., connection media, interconnection										
	devices, peripherals, server, workstations) that meets user requirements;										

	B4.2 optimize and maintain a computer network (e.g., check performance,			х		х	х		х	х	
	accessibility, and security);										
	B4.3 implement various network services for users (e.g., HTTP, FTP, remote										
pue	desktop, SMTP, DHCP);										
d	B4.4 configure workstations, servers, and/or networked devices (e.g., create										
ent	users, assign privileges to folders, set up services, format and partition hard										
-k S em	drives);										
vor	B4.5 apply logical troubleshooting techniques, using data from simulation			х		х	х	х	х	х	
letv 1an	and/or diagnostic tools (e.g., simulation software, packet sniffers, cable										
Z 2	tester										
	B5.1 compare low-level and high-level programming languages;								х	х	
	B5.2 apply programming concepts including subroutines, parameter passing,								х	х	
	decision and repetition structures, arrays, and character representation;										
ing	B5.3 use a design process (see pp. 22–23) to create a program that interacts		х	х	х	х	х	х	х	х	х
nm	with a real-world device (e.g., traffic light, alarm system, robot, joystick);										
put ran	B5.4 write a low-level program that runs on a real or simulated controller			х	х	х	х	х	х	х	х
nogo	device (e.g., programmable logic controller [PLC], microcontroller, assembler										
υĒ	simulator).										
TEJ4M	Technology The Environment and Society	WS	DG	BR	MM	11	PS	14	SJ	12	LC
	C1.1 assess the effects of computer and electronics technology on the							-			
ent	environment (e.g., hazardous materials contained in computer components,										
v ar	use of energy and other resources, fuel consumption and air pollution										
logi	reduced by computerized traffic control systems);										
or Su	C1.2 outline and apply strategies to recycle or reuse computers and							-			
ech Je E	computer components (e.g., develop a local recycle/reuse program, create										
цц т	an in-school public awareness campaign).										
	C2.1 assess the benefits of computer and electronic technology for society							-			
р	(e.g., improved access to technology for economically disadvantaged people										
v ar	and nations; greater efficiency and lower costs for information services;										
ogy	development of a "global village"; software that can help monitor or predict										
nol ety	changes in wetland area, deforestation, and climate);										
Techr Socie	C2.2 assess the drawbacks of computer and electronics technology for							-			
	and the second second second literation of the second second second second second second second second second s	1	1	1	1	1	1				

	telemarketing, loss of privacy, infringement of intellectual property rights										
TELANA	through unlicensed copying and electronic distribution).	14/6	D 0			14			<u> </u>	10	
I EJ4IVI	Professional Practice and Career Opportunities	WS	DG	BK	MIM	11	PS	14	SJ	12	LC
	D1.1 explain the importance of following industry health and safety	х	х	х	х	х	х	х	х	х	х
	standards and practices (e.g., standards and regulations specified in the										
	Workplace Hazardous Materials Information System [WHMIS] and the										
>	Electrical Safety Code; practices such as electrical grounding and										
fet	precautionary measures when working with live circuits and devices that										
Sa	store electrical energy; ergonomically										
bue	xD1.2 evaluate and use appropriate techniques to avoid health and safety	х	х	х	х	х	х	х	х	х	х
th	problems (e.g., repetitive strain injuries, eye strain, electrical shock, burns										
eal	from soldering tools) when assembling, using, and maintaining computer										
Ĩ	systems.										
	D2.1 describe the components of an acceptable use policy for computers,							х			
Ę	cellular technology, PDAs, and/or other electronic devices (e.g., appropriate										
uri	use, protection of intellectual property rights, prohibition of plagiarism);										
Sec	D2.2 outline a purchasing policy for computers, taking ethical issues into							х			
pu	account (e.g., the environment, human rights, child labour);										
s a	D2.3 describe methods to safeguard confidential data and other sensitive							х			
thic	electronic information (e.g., password protection, encryption, biometrics,										
Ш	behavior metrics, steganography).										
	D3.1 assess various career opportunities related to computer technology and										х
	electronics(e.g., computer engineering technician or technologist, electrical										
	engineer, programmer, systems analyst), and identify opportunities for										
	further training and certification (e.g., college or university programs, trade										
S	certifications);										
litie	D3.2 explain the need for lifelong learning in the computer technology										х
tur	industry (e.g., rapid changes in technology, employability, progress into										
oc	positions of greater responsibility);										
ld C	D3.3 demonstrate an understanding of and apply the Essential Skills that are										х
er (important for success in the computer technology industry, as identified in										
are(the Ontario Skills Passport (OSP) (e.g., reading text, writing, document use,										
Ŭ	computer use, oral communication, numeracy, thinking skills);										

D3.4 demonstrate an understanding of and apply the work habits that are					х
important for success in the computer technology industry, as identified in					
the Ontario Skills Passport (e.g., working safely, teamwork, reliability,					
organization, working independently, initiative, self-advocacy);					
D3.5 maintain an up-to-date portfolio that includes pieces of work and other					х
materials that provide evidence of their skills and achievements in computer					
technology (e.g., Passport to Safety certificate, OSP Work Plan, OSP					
Transition Plan, circuit diagrams, photographs of projects, video of working					
robot), and explain why having a current portfolio is important for career					
development and advancement.					