

Legend

X The standard is clearly addressed by program activities.

- This standard potentially could be addressed as part the program either by actions that the coach or teacher takes when working with the students or by conditions established by the program.

Module Abbreviations								
WS	Starting with Workforce Skills	PS	Project Sprints and Competition					
DG	Designing for the Game	14	Industry 4.0 and Your Community					
BR	Building and Programming a Basic Robot	SJ	Sensors Machine Learning and Java					
MM	Machines to Mechanisms	12	Improving through Iteration II					
11	Improving through Iteration I	LC	Learning and Pathways and Career Exploration					

Intro to Computer Programming Grade 11 College Preparation											
ICS3C	A. Programming Concepts and Skills	WS	DG	BR	MM	11	PS	14	SJ	12	LC
	A1.1 use constants and variables, including integers, floating points,			-		-			х	х	
	strings, and Boolean values, correctly in computer programs;										
	A1.2 demonstrate the ability to manipulate string data in a computer			х		х			х	Х	
	program (e.g., swap two characters, capitalize first letter, extract a portion										
su	of an address, count the occurrences of a word or letter);										
ssio	A1.3 use assignment statements correctly with both arithmetic and string			х		х			х	Х	
pre	expressions in computer programs (e.g., numStudents = 4 + 2, name =										
I EX	"Devi");										
anc	A1.4 use Boolean operators (e.g., AND, OR, NOT), comparison operators								Х	х	
oes	(i.e., equal to, not equal to, greater than, less than, greater than or equal										
	to, less than or equal to), arithmetic operators (e.g., addition, subtraction,										
ata	multiplication, division, exponentiation, parentheses), and order of										
	operations correctly.										
	A2.1 write programs that incorporate user input, processing, and screen			х		х			х	Х	
	output;										
JCe	A2.2 use sequence, selection, and repetition control structures to create			х		х			х	Х	
nar	programming solutions;										
e nte	A2.3 demonstrate the ability to write algorithms with nested structures.			х		х			х	Х	
odé 1air	A3.1 explain the difference between syntax, logic, and run-time errors in								х	Х	
N C	computer programs;										

	A3.2 demonstrate the ability to correct syntax, logic, and run-time errors in					х			х	х	
	computer programs;									V	
	A3.3 use workplace and professional conventions (e.g., naming, indenting,			х		х			х	X	
	commenting) correctly to write programs and internal documentation										
	A3.4 demonstrate the ability to interpret error messages displayed by			х		х			х	X	
	programming tools (e.g., compiler, debugging tool), at different times										
	during the software development process (e.g., writing, compilation,										
	testing);										
	A3.5 demonstrate the ability to validate a program using test cases.			Х		Х			х	Х	
ICS3C	B. Software Development	WS	DG	BR	MM	11	PS	14	SJ	12	LC
e o	B1.1 use various problem-solving strategies (e.g., divide and conquer,	х	Х	х	х	х	х	х	х	х	Х
wai elop t	working backwards, process analysis, examples, extreme cases, tables and										
oftv eve	charts, trial and error) to solve programming problems;										
зоъ	B1.2 use the input-process-output model to solve programming problems.			х		х	х		х	х	
	B2.1 design a simple program from a program template or skeleton (e.g.,			х		х					
	teacher-supplied skeleton, Help facility code snippet);										
	B2.2 use appropriate vocabulary and mode of expression (i.e., written,		Х	х		х			х	Х	
suc	oral, diagrammatic) to describe alternative program designs and to explain										
utio	the structure of a program;										
Sol	B2.3 write subprograms (e.g., functions, procedures) that perform one								х	Х	
Ire	well-defined task and use parameter passing and appropriate variable										
e M.	scope (e.g., local, global);										
Soft	B2.4 use industry-standard programming tools (e.g., structure chart, flow		Х	Х					х	Х	
<u>ଜ</u>	chart, UML [Unified Modeling Language], data flow diagram, pseudocode)										
gnir	to represent the structure and components of a computer program;										
esię	B2.5 design user-friendly software interfaces (e.g., prompts, messages,		Х	х		х			х	Х	
Õ	screens, forms).										
	B3.1 use simple algorithms (e.g., validate entered data, count, accumulate,			х		х			х	Х	
	use random numbers) to design a program according to specifications;										
в ш	B3.2 solve problems (e.g., calculation of gross pay; fuel consumption on a			х		х			х	Х	
gnii le rith	car trip; average of students' marks; temperature at a given altitude, using										
esi <u>(</u> mp	the environmental lapse rate) by applying mathematical equations or										
A Si D	formulas in an algorithm;										

-											
	B3.3 design algorithms to detect, intercept, and handle run-time errors (e.g., division by zero, roots of negatives).			-		-			-	-	
	B4.1 describe the phases (i.e., problem definition, analysis, design, writing code, testing, implementation, maintenance), milestones (e.g., date of completion of program specification), and products (e.g., specification, flow chart, program, documentation, bug reports) of a software development life cycle;	x	X	x		x	x		x	X	
	B4.2 use a variety of techniques (e.g., dialogue, questionnaires, surveys, research) to clarify program specifications;		Х								
ycle	B4.3 use project management tools (e.g., Gantt chart, critical path diagram, PERT chart) to show tasks and milestones in a teacher-led project;	x		Х		x	x	Х			
pment C	B4.4 use a test plan to test programs (i.e., identify test scenarios, identify suitable input data, calculate expected outcomes, record actual outcomes, and conclude 'pass' or 'fail') by comparing expected to actual outcomes;	x		X		x	x	х	Х	x	
Develo	B4.5 use a variety of methods to debug programs (e.g., manual code tracing, extra code to output the state of variables);			х					Х	Х	
tware	B4.5 use a variety of methods to debug programs (e.g., manual code tracing, extra code to output the state of variables);			х		х		х	x	Х	
The Sofi	B4.6 communicate information about the status of a project (e.g., milestones, work completed, work outstanding) effectively in writing throughout the project			x		x		х	x	х	
ICS3C	C. Computer Environment and Systems	WS	DG	BR	MM	11	PS	14	SJ	12	LC
onents	C1.1 describe the functions and features of the internal components of a computer (e.g., CPU, RAM, ROM, cache, hard drive, motherboard, power supply, video card, sound card);			x					x	х	
Computer Compo	C1.2 use correct terminology to describe computer features and specifications (e.g., processor type, bus speed, storage capacity, amount of memory);			-				-	-	-	
	C1.3 describe the functions and features of common computer peripheral devices (e.g., printer, monitor, scanner, keyboard, mouse, speakers, USB flash drive);			x		-		-	-	-	

	C1.4 compare and contrast common ISP services (e.g., DSL, cable, dial-up,			х		х		х	Х	Х	
	regional Wi-Fi) and home networking hardware (e.g., NICs, routers,										
	hardware used for wired and wireless connections).										
	C2.1 use an operating system to logically organize computer files for easy	-	-	-	-	-	-	-	-	-	-
	retrieval, backup, and recovery;										
	C2.2 use standard backup procedures to back up user files.	-	-	-	-	-	-	-	-	-	-
	C3.1 describe the functions and features of a software development			х		х			х	х	
	environment and use it to write and run a computer program;										
/are ient ent	C3.2 describe the differences between applications, programming			х		х			х	Х	
opm	languages, and operating systems;										
le So evelo ivirc	C3.3 use Help documentation as a guide to designing and writing			х		х			х	Х	
E De Th	programs.										
ICS3C	D. Computers and Society	WS	DG	BR	MM	11	PS	14	SJ	12	LC
	D1.1 describe negative effects of computer use on the environment (e.g.,							-			
	creation of waste, unnecessary printing of emails, heavy power										
₽	consumption) and on human health (e.g., exposure to radiation,										
billit	musculoskeletal disorders, eye strain, various health consequences of										
inal	reduced activity levels);										
stai	D1.2 identify measures that help reduce the impact of computers on the							-			
Su	environment (e.g., lab regulations, school policies, corporate policies,										
pu	provincial policies, paperless workplaces, computer recycling and reuse)										
di di	and on human health (e.g., ergonomic standards);										
dsh	D1.3 describe ways in which computers are or could be used to reduce							-			
arc	resource use and to support environmental protection measures (e.g.,										
Ne N	computer modelling to reduce use of physical resources; interpretation of										
II St	large amounts of environmental data; management of natural resources;										
nta	programmable temperature control to reduce energy consumption);										
me	D1.4 identify government agencies and community partners that provide							-			
lo	environmental stewardship opportunities (e.g., local community recycling										
U VII	centres, private companies that refurbish computers, printer cartridge				1						
ū	recycling programs).										
e c	D2.1 explain the need for an acceptable-use policy for using computers at	х		х		x	х	x	х	х	Х
n CC	school and at work;				1		1				

									-		
	D2.2 describe and use appropriate strategies to avoid potential health and							-			
	safety problems associated with computer use (e.g., musculoskeletal										
	disorders, eye strain);										
	D2.3 describe procedures to safeguard data and programs from malware	-						-			
	(e.g., viruses, spyware, adware).										
	D3.1 explain how emerging technologies can affect personal rights and							Х			
	privacy (e.g. video surveillance, cyberbullying, identity theft);										
	D3.2 describe some emerging technologies and their implications for, and							Х			
lies	potential uses by, various members of society;										
golo	D3.3 describe some of the solutions to complex problems affecting society							Х			
Juc	that have been or are being developed through the use of advanced										
ech	computer programming and emerging technologies (e.g., monitoring and										
В Т	regulating electrical supply and demand; using facial recognition programs										
gir	to verify the identity of persons entering a country; analysing criminal										
nei	activity by overlaying crime data on satellite imagery; analysing large-scale										
Ш	meteorological data to predict catastrophic storms).										
	D4.1 research and describe trends in careers that require computer skills,										Х
	using local and national sources (e.g., local newspaper, national										
	newspaper, career websites) ;										
	D4.2 identify opportunities for experiential learn - ing (e.g., co-op										Х
	programs, job shadowing, career fairs) related to computer science;										
	D4.2 identify opportunities for experiential learn - ing (e.g., co-op										Х
	programs, job shadowing, career fairs) related to computer science;										
ties	D4.3 research and report on postsecondary educa - tional programs										Х
linu	leading to careers in the field of information systems and computer										
orti	science (e.g., institutions offering relevant programs, industry										
bdd	certifications, courses of study, entrance requirements, length of										
0	programs, costs) ;										
dar	D4.4 identify groups and programs that are available to support students										Х
oue	who are interest - ed in pursuing non-traditional career choices in										
sec	computer-related fields (e.g., mentoring programs, virtual										
ost	networking/support groups, specialized postsecondary programs, relevant					1					
ъ	trade/industry associations) ;										
	D4.5 describe the Essential Skills and work habits that are important for	х	х	х	х	х	х	х	Х	х	х
	success in com - puter studies, as identified in the Ontario Skills Passport.										